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CHAPTER  I    -   ALGORITHMS  FOR  REAL  NUMBERS 
 
 

Section  0.   Introduction. 
 
 In mathematics we can construct as many geometrical models as we please.  
All that we need is to have the elements declared, to state the axioms and the 
definitions, and to have consistency in our mathematical logic.  All of those 
geometries are not related to each other, but they all report to the topology. 
 Because of this, if we prove something in one geometry it may not be the same 
as in another geometry.  Only one geometry is the Euclidean Geometry (EG), the 
other geometries are non-Euclidean Geometries.  For example if we consider instead 
the  V-th postulate in  (EG) where two parallel lines do not intersect, the condition 
that they intersect at two ideal points  Ω and  Ω’, we enter the Hyperbolic Geometry 
(HYG). 
 Since we cannot compute in a geometry, it is known that to every geometry we 
can associate a corresponding algebra but the converse is not true, and we call this 
algebra the Number Theory corresponding to that geometry.  In the 1940, E. Schmidt 
was the first to say that since we can not compute in a geometry, to every geometry is 
corresponding an algebra.  He is the father of the General Algebraic Geometry as      
F. Gauss is the father of the Algebraic Number Theory, which is the algebra of the n-
dimensional Euclidean Geometry. 
 In every number theory there is a very strong theorem where if we implement 
rightly the conditions of other new theorems in the conditions of this main strong 
theorem, then those new theorems become immediate consequences of that initial 
strong theorem.  This is known in the modern mathematics as the Euler System (ES) 
of that number theory.  In other words, the (ES) in that corresponding number theory 
is a very powerful tool to prove many theorems in that number theory. 
 The basis of all results of this book is an algorithm and we shall therefore give 
a short historical survey of its development. 

In order to develop an algorithm all we need is a starting vector and a 
transformation function, T. Iterating T we obtain a sequence {T1,T2,...,Tl,Tl+1,...,Tl+m, 
Tl+m+1,...}. If Tl = Tl+m, then the algorithm of the starting vector is called periodic with 
the length of the preperiod, or tail l, and the length of the period m
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Section  1.   The  Euclidean Algorithm  (EA). 
 

We start with the well known and powerful Euclidean Algorithm (EA), known 
to Euclid more than 2000 years ago.  Another interpretation of the  (EA) which leads 
to the simple continued fractions is as follows: 

Let the starting vector be (0)a = ( (0)
1

a ), (0)a ∈R, and the transformation function 

which is the greatest integer function  [ (0)
1

a ] as a companion vector  (0)b = [ (0)
1

a ] = 

( (0)
1

b ) ∈ R; then the recursive transformation 1)(va + = ( (v)
1

a - (v)
1

b  ) 1−  = (v)(v)
11

ba
1
−

   

applied to these vectors becomes a sequence   { (v)a },  v = 0,1,... ;   which is called the 
continued fraction interpretation of (EA).  For example by using this algorithm it is 

easy to prove that every rational number 
b
a

  can be represented as a finite simple 

continued fraction or by a finite sequence. 
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 In  1737,  Euler proved that every real quadratic irrational can be represented 
by an infinite periodic continued fraction or by a periodic  (EA) sequence 
development. The converse was proved by Lagrange in  1770.  Of course, if the 
number is not a quadratic irrational, but is a real algebraic number of higher degree or 
a transcendental real number, then its development by the (EA) cannot be periodic.  
  

EXAMPLE  2 
  For  3a (0) =  , 1b (0) =  
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 This theorem is called  Euler –Lagrange Theorem  (ELT)  for quadratics and 

it proves the always periodicity of the  (EA).  Periodicity is a very important property.  
For instance, in the quadratic case it enables us to solve the incorrectly named  Pellian 
Equation (it is an Euler  Ecuation)   x2 – my2 = ± 1  or   ± 4   where  m  is a square free 
natural number, and to find the fundamental unit in the quadratic field  Q ( m ) .   As 
it is known, the problem of finding the multiplicative group of units in any algebraic 
field  F  over the field  Q  of rationals (or relative to an algebraic field  A over  Q)  
was a difficult open question and it is known as  Dirichlet’s problem.  This is to find 
the  Galois’ multiplicative group of fundamental units in any algebraic number field.  
If Dirichlet’s problem is solved it gives a complete solution to  Galois’ theory of 
polynomials, providing the factorization of higher degree polynomials.  Once the 
factorization is known, then we can find the solutions of higher degree polynomial 
equations.   

It is the always periodicity of the  (EA) which solved  Dirichlet’s problem 
completely in the quadratic fields.  The dimension of the  (EA) is  2  and it is given by 
the degree of the irrational which makes  (EA)  periodic by  (ELT).   

This justifies why we do not have a formula for the solutions for higher degree 
polynomial equations as we have for the quadratic equations. Hilbert related the 
existence of the integer solutions for the Diophantine equation   x2 + y2 = z2  with the 
always periodicity of the  (EA)  using the solvability by radicals.  That is, since a 
quadratic equation is solvable by a quadratic irrational and every quadratic irrational 
makes  (EA) always periodic, it follows that the degree  n = 2  in x2 + y2 = z2 is related 
with the dimension   n = 2  of the  (EA). 
 Construction with the ruler and the compass of the quadratic irrationals on the 
real line is possible because the (EA) is always periodic, and because of its periodicity 
there is an  (EA) algorithmic approximation for every quadratic irrational. 
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 EXAMPLE  3 
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 No such algorithmic approximation exists for higher degree irrationals.   This 
is the reason why  Hilbert introduced a new axiom in logic named the axiom of 
completeness in order to prove the one to one correspondence between the real 
numbers and the oriented straight line. 
 All of these problems solved in quadratics from the always periodicity of the  
(EA) remained open problems in higher dimensions. 
 

Section  2.   Jacobi Algorithm  (JA). 
 
Mathematicians had almost abandoned hope of obtaining further information 

about the arithmetic properties of higher degree algebraic irrationals by means of a 
simple continued fraction (or EA), when  Jacobi [VI] generalized the  Euclidean 
Algorithm  for the cubic case. 
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In  1839, Hermite [V], in one of his letters to  Jacobi, challenged  Jacobi to 
find an algorithm to develop irrationals of any degree into periodic sequences.  
Hermite was asking for the general simple periodic continued fractions algorithm.  
But it was only after thirty years of frustration that Jacobi in 1869 extended  (EA) 
methods to successfully represent some cubic irrationals by means of simple 
continued fractions. 

An application of the  (JA) starts with the initial vector (0)a = ( (0)
1

a , (0)
2

a )∈R2,   
n = 3,  the components of which are algebraic numbers.  By use of the greatest integer 
function a “companion vector” (0)b = ( (0)

1
b , (0)

2
b )∈R2 with (0)

ib = [ (0)
ia ], i = 1,2  is 

defined.  A recursive transformation 1)(va + = ( (v)
1

a - (v)
1

b  ) 1−  ( (v)
2

a - (v)
2

b , 1)  is constructed 

and applied to these vectors.  Then the sequence  { (v)a },  v = 0,1,2…;  is called  

Jacobi algorithm  (JA)  of  (0)a . 
 EXAMPLE  1 
 
 (0)a = ( (0)

1
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2
a ) =  ( 3 2 , 3 4 )   (0)b = ( (0)
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2
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(2)a = ( )124,22 333 +++       (2)b = ( )3,3  
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 (3)a = 
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 (3)a = ( )124,22 333 +++  = (2)a ,     (3)b = ( )3,3 = (2)b  
 
 (JA)  of   3 2  and  3 4   is periodic and  (JA)  of  { 3 2 , 3 4 } = {(1,1), (2,3), 
( 3,3 )}  or  3 2 = {1, 2, 3}  and   3 4 = {1,3}. 

For good choices of the starting vector (0)a  and transformation (0)b , the  
iteration  of the transformation becomes  periodic, that is the transformation cycles 
around a finite set of vectors . In this instance (JA) is said to be periodic, and the 
results lead to the (JA) periodic representation of third degree irrationals. The 
difficulties associated with this work are many.  Jacobi’s results were confined to a 
few numerical examples in a cubic field, where Jacobi exhibited periodic 
developments for  3 2 , 3 4 , 3 3 , 3 9 , 3 5 , 3 25 .   Those results were to prove  Euler 
direction for cubic irrationals.  This problem is known as Hermite’s problem for 
higher degree irrationals.  In spite of all Jacobi’s efforts  Herm ite’s problem remains 
unsolved

 

Section  3.   Perron Algorithm  (PA). 
 
               In 1907, Perron [VII] generalized the work of Jacobi.  This generalization is 
known as the Jacobi- Perron algorithm (JPA). 

In its general form, as defined by Jacobi for n = 3 and by Perron for n ≥ 2, an 
application of the (JPA) starts with the definition of an initial vector (0)a =                  

= ( (0)
1

a , (0)
2

a ,…, (0)
1

a −n )∈Rn-1 ,  n ≥ 2, the components of which are algebraic numbers.   

By use of the greatest integer function a “companion vector” (0)b =( (0)
1

b , (0)
2

b ,…, (0)
1

b −n ) 

∈ Rn-1, with (0)
ib = [ (0)

ia ], (i = 1,2,…,n-1)  is defined. A recursive transformation 
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1)(va + = ( (v)
1

a - (v)
1

b ) 1−  ( (v)
2

a - (v)
2

b ,…, (v)
1-n

a - (v)
1-n

b , 1)  is constructed and applied to these 

vectors.  Then the sequence  { (v)a }, v = 0,1,2…;  is called  (JPA).  
Perron generalized  Jacobi’s methods to apply to irrationals of any degree but 

since the choices of starting vector and transformation are difficult to make, he was 
also limited to a few periodic developments of higher degree irrationals. Those results 
were to prove an Euler direction for higher degree irrationals, also. With all Perron’s 
efforts Euler’s direction in proving Hermite’s problem remains o pen.   

Perron was more successful in showing that if a development is periodic then 
the components of the initial vector are algebraic numbers.  This latter result was 
general, with this proving completely Lagrange direction for higher degree irrationals. 

Advances were slow and difficult, but in 1873 Bachman [I] proved results for 
other cubic irrationals using the  (JPA); results that were accompanied by many 
restrictions. 
With this work on Hermite’s problem progress come to a halt, because of the failure 
of the  (JPA) to produce new numerical results, that is, additional cases in which the 
transformation becomes periodic were not achieved.  Perron and all others recognised 
that the usual choices for starting vector were too limited.  No further progress 
occurred on these problems until Hasse and Bernstein [II] turned their attention to 
them.
 

Section  4.   Hasse and Bernstein Algorithm (HBA). 
 

In 1965,  Hasse  and  Bernstein  made a broader approach to the periodicity 
problem associated with the  (JPA).  Hasse  and  Bernstein started with an algebraic 

extension of the rational numbers,  Q(w), where  w  takes the form  w = n n dD +   

with  P(x) = (∏
=

−−
n

1i

n
i

n d)D(x ),  d∈Z,  Di∈N  and  d D. 

(0)a = ((w-D1) ·  (w-D2) · … ·  (w -Dn-1),…, (w -D1)· (w-D2), (w-D2))   with (0)b = (0)a (D1). 
They showed that certain significant restrictions on  D  and  d  led to a  (JPA) 

that was purely periodic (that is that the length of the preperiod is zero). 
1) For d > 0  they proved that that  (JPA)  of  (0)a  is purely periodic when     

D ≥ (n-2) ·  d, d D  and  n ≥ 3,  and 
2) For d < 0 the sequence is also purely periodic when D ≥ 2·  (n-1) ·  d, d|D and n ≥ 3. 
With these conditions, the length of the period is  n· (n-1). For this approach the 
periodicity remains an open problem since there are bounds on D and the restriction   
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d D must hold.  For example no periodicity for  w = 5 5 612 +   can be proved under  
(HBA) restrictions since  12 ≥ (5-2)· 6 = 18.   

The  Hasse and  Bernstein results were limited by their choices of  w  as real 
numbers.  It should be known that  Hasse  and  Bernstein were not interested in  
Hermite’s problem in spite of the fact that their results had a strong r elation to that 
problem.  Specially, they did not realize that the periodicity of their algorithm leads to 
a solution of  Hermite’s problem for some real algebraic number  w,  when  (HBA) 
becomes the general continued fractions algorithm.  There are more  n-degree 
irrationals which have periodic  (HBA) algorithmic development than they have a 
general periodic continued fraction development or a periodic  (JPA) algorithmic 
development. Hasse  and  Bernstein were interested in solving  Dirichlet’s  problem to  
find units in algebraic number fields or  Galois’ group of units from the periodicity of 
their algorithm.  From these results they proved that in both cases  (1)  and  (2) 

( )k

kk

k
Dw

Dw
e

−
−=  ,  k n ,  k > 1  are the  ô(n) – 1  units in the corresponding 

fields  Q(w) ,  w = n n dD + ,  d D ,  D∈N , d∈Z,  n ≥ 3. 
The shortcomings of these very important results are the restriction on  d  and 

the bounds on  D.  As of this result the Euler direction in proving the periodicity of 
their algorithm is an open question too. 


