Chapter 1. BAICA’S GENERALIZED
EUCLIDEAN ALGORITHM (BGEA)

Section 2.0. Introdunction

In 1980, the author [1] defined a midification of the (JPA) that used the
Hasse and Bernstein initial vector, but was not restricted to the real numbers.
For the first time the complex numbers were considered. The only differences
in the definitions stated alone are that the D,’s are now complex numbers. An
immediate consequence of this extensions is that the bounds on D in the (HBA)
are now eliminated and only the divisibility condition, d/D, remains,

Returning to the example cited in the Section 1.5. it can now be seen

that w= ¥12° +6

has a periodic development, only 6/12 is required. At that
time Baica proved only that d/D is necessary condition to make her algorithm
to be periodic and named her algorithm, the algorithm for complex field
(ACF). Later when Baica proved that d/D is also a sufficient condition for the
periodicity of her (ACF) algorithm then (ACF) becames Baica’s General
Euclidean Algorithm (BGEA).

In this book we refer to Baica’s Generalized Euclidean Algorithm as
(BGEA).

Section 2.1. Baica’s Generalized Euclidean Algorithm
(BGEA); a different proof for the necessary
condition of the restricted periodicity.

In this section we will give a different proof from [1] for the necessary

condition of the restricted periodicity.
Definition 2.1.1. Let w be a real root of an irreductible polynomial of
degree n > 2 over 0. A sequence of (n-1)-dimensional vectors @ will be

called (BGEA) of the initial vector.
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@11 d9= (a{m(w), a¥w), ..., “”(w))

afo]'(w) eClw], (=12 ..,nl1)

L) :[( al* — 6 a§” -5, 0l b, 1)]

(v=0,1,...) where fori=1,.,n—1 a™ =a” (w)eC and
") =af”(pri)) for a fixed integer D with

i

(2.1.2) 4

i

p=e " ,and t is any fixed integer of {0]1, .., n—1}

Following Bernstein [25], we now introduce complex numbers A,-(V}as follows,

AP =6;,0<i, j<n=-1 (&; being Kronecker symbol)

ks =
e AP =A§”+'izl b AR g0,
k=1

Thus for instance, we have

AP =1 P = AP = . = A=

n-1
AP =4+ py b AF) = 40 +0=1

n-1
A{{JH‘H) =Aél) +I§ be'l) Aékﬂ) =b£l_}] +Aéﬂ) :b,(,]_}l

A% =0, AV =1, AP =4 =..=4"" =0.
Bernstein [25] has proved that for any algorithm
v+ v =1 v v
" = (g O (o —b, ., a -0, 1)
with vectors @™ € R™ and a fixed vector a”), where
o= (p0  pC ))
5o = (b, .., b
is any given sequence of vectors, the following formulas hold, if the numbers

A are defined by (2.1.3).
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For v = 0 the determinant on the left of (2.1.7) simplifies to 1 by (2.1.3)

(1) and the expression on the right side becomes (-1)° / 1 + 0 = 1. Bernstein

proved formulas (2.1.4) — (2.1.7) by induction. The most important formulas

for our purpous are the last two and we shall apply them next.

The reader should note carefully the structure of 5" = ar@(p’D), for

any fixed integer D, where 0 <7 < n-1. Actually, f could be any natural number,

since o" = 1. But once a value for 7 is choosen in a particular (BGEA), it must

remain fixed throughout the sequel.

Now, we shall state a (BGEA) whose periodicity is one of the main

results of this book. We shall carry out the calculations for » = 4 in detail

(2.1*). For n = 5 (2.2*) we shall write down the respective vectors @ and h%
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without making the necessary calculations and from the pattern of the (BGEA)
for these two cases we shall give the proof for the general (BGEA) by
induction (2.3%).

In [24] Bernstein and Hasse proved similar results for (JPA) with extra
conditions determined from the fact that D, € N. For n = 4 and n = 5 the
development of (BGEA) is contained in [24] except that the D,’s are complex
numbers, The results are repeated or slightly modified with regard to the
(BGEA). For the general case n of (BGEA), the author proved the periodicity
by induction.

Theorem (2.1.1)

LetDeN de Z, dD. Then

(2.1.8) w=%D"+d , n>2

is an algebraic integer of degree ».

Bernstein [25] proved this theorem for both cases d > 0 and d < 0, but
for completeness we prove this theorem here again. For d > 0 we repeat
Bernstein’s proof in [25] but for d < 0 we give a simple algebraic proof instead
of Bernstein’s analytic proof.

Proof: Let us first prove it for d> 0, w is root of
(2.1.9) ¥'—-(D"+d)=0,
hence it 1s an algebraic integer, by hypothesis.

To prove that w is of degree n, we have to show that the
polynomial
(2.1.10) P(x) =x" - (D" + d) is irreductible over Q.

The roots of (2.1.9) are

(2.1.11) {xk:iDn"*d

w;“-—xD.

Pis P =exp(2rki/n), k=0,1,...n-1

We havew"=D"+d e N,

Let k(< n) be the least positive integer such that w* & N.
Then n=gqk+r whence r=0s0 kin.
Now D"<D"+d<D"+D if d>0.
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Suppose k <n.
Hence D" <D"+d < (D"+ 1)
This gives DF < (D" +d)f" <D + 1
or D <wf< D" | the required contradiction tow" € N.
Now let d<0.
w'=D"-d.
We now show D* > wf > DF -1. Let np=n/lk.
Dkug > wkno
D">D"-D.
Let us show w*>D"— 1.
W= wh™ > Dk —1)™
D' -d= (D*)"* —d>(DF =1)™.
(D" - (D* -1)*>d
We have (D*)™ - (Dk ~1)™ = x" — (x—1)" say, withx= D

=[x (= D] jxg? +x"7 (x—l)+,..+(x—l)”°_l] >

>no(x =107 2 2(x~1), (no=n/kwherek/n, k<n)
=BF-HeiD-1=D=d
(provided D > 2, which is true).
So w* > D¥ -1 and w* is irrational. Thus we arrived at a contradiction. Since w
is of degree £, then w* must e N,

Hence w has exactly the degree n.

2.1*. A periodic (BGEA), n = 4

Suppose

2.1%1) w=4D*"+d, D, |d| eN d/D.
Now since w'=D*+d, (w'-D*—d=0, we have

(2.1*.2) w=-D)(w-pD)(w-p'D)(w-p’'D)-d=0
where p =exp(mil2).
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For brevity, write
(2.1% 3) {Dy, D;, D3, D4} for {d, pD, p°D, p’ D}
taken in some order, i.e. {D, D3, D3, D4} is some permutation of the numbers

{d, pD, p*D, p’D}. We shall now carry out the (BGEA) with the initial vector

(2.1*.4) d® = ((w-D)) (w-D,) (w-Ds), (w—Dj) (w—Dy),
(w - Dy)).
From (2.1*.2) and (2.1*.3) we obtain
(2.1%.5) (w—=D1) (w—D2) (w-Ds) (w-Ds)=d,

which can also be writen in the forms

1 =(W“‘D2)(W_D3)(W“D4)

}’V"‘Dl d i
1 _(w=D)w-D,)
(w—D,)(w— D) d ‘
]. W_D4

(w=D)w—Dy)w=D3)  d
The following notation will be very useful in the sequel.

(2.1*-6) {f;’k (W) o (W_Di )(W i DH'I )’ T (W'Dk)
fii(w)=w-D;. 1<i<k<n

Thus, for instance we have from (2.1*.6)

SirmaW)=(w-D))(w=Dy) ... (w-D,),

fl_i(w) =W - D].
The following formulas will be used constantly. They are obtained from
(2.1%.7) w-D;)w-Dy) ... w=D,)—d=0 and (2.1*6).
v (W) £ w
' 1 =f1,1—1( Jelpiat ); G5 Beny
Jix(W) d
(2.1* 8) jo b eiadl (k <n);
Sirw) d
1 (w
[ fin(W) d
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The reader should also note that all

(2.1*.9) w—D;=w-p D are non zero.

An important step in the development of the (BGEA) of a®, a from
(2.1* 4), is the calculations of the A" (i =1,2,3;, v=0,1, ..) Now by
definition of the (BGEA) (in our case) and (2.1.2) (i) since [w] = D, where

_[[w); for d>0
- [w]+1; for d<0

[w]
(2.1*.10) b =™ (F'D), (=1,2,3; v=0,1,..)
Since pSD could be any of the numbers D1, Dy, D3, D4, we chose ,as D=D, so
that
@1:11) M =aP D)), i=1,2,3; (v=0,1,..).
Formula (2.1*.11) simply means, that if a[-(”) = a}”(w), which is always the
case for algebraic vectors, then bf") is obtained form ai{”)(w) by substituting

D] for w.
The following formula, based on (2.1*.11), 1s important

If a” =(w-D)P, P=P(w),
2. 1*.12) (P a polynomial in w)
then b =0 (i=1,2,3;v=0,1,2,...).

We shall now carry out the (BGEA) for our starting vector (2.1%.4),

proceeding in four steps.

Step one Calculating a

@1x13)  a=(a®, a, a$))

Step two Calculating 5%

@114 =MD, a8 (D), a8 (D).

Step three Calculating a® — b®
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Q:1%15) a® - p = (al(” -, af? —bév), aé") = bé“] )

Step four Calculating a®™"

-1
@1r16) @ =(a® -s) (@8 -5, & -5, 1).

Taking into account (2.1*.11), (2.1*.12) and (2.1*.5) we obtain
dV= (s ), fi20), fo2 ().

B9=( o 0, D;-Dy).

a? b= (fisw), fi.2W), f.1(W).

e {f],z(w)'f&,a(w), fi,l(w)'f::l,zx{w), f4,4(“’)}

d d d

b‘”z[ 0 0 LRt
7 ? d

oo [£i200Lia0) FaO0) - fus) fia )
d : d N '

= {j},l(w)'f:i,ti(w): .ﬁi(W)'fs,s(W)? f33(wJJ.
d d i
bP =( 0, 0, D; - D).

and suppressing the arguments w, we have

fatdse hads
a(z)_b(z):( 1,1d3,4) 1_1d33’fUJ_

f3

a = {T: fl,?. s fz,z]-

Here we note that, if d = 1 (but not if & = -1) then a® = &', and we

have Theorem (2.1*.1)

Let w=4D* +1 , D e N. Then the (BGEA) of



32 A PERIODIC (BGEA), n=4

304, Fis s

with fia=1 67 =a™ D)) (=1,2,3 v=0,1,2, ...) is purely periodic
and the length of the primitive period is m = 3.

We now proceed with the (BGEA) in the case where 4 # 1, and obtain
further

FP=(C 0, 0, D-D

3

a® _ p® = [% Sz f].,l]'

a¥= (fi2-foa, fir Sos, foa)
= 0., 0., Di—Dd

dP b= (ha foa, firvfos, fi)
o [f],l f3.4 , S fas ‘ fé,a}

d d d

bm:[ 0 o Pi=Ds
E 3 2 d .

A9 pP = Sufa halsz A
4 d ~ d )

b¥=ico , 0., Dy—DBi)

ha fin
ao-p0 - (L2, L2 g |

Lo , _
a? = (LZTst fl,} ‘f4,4 » fa,z:}-

BP=( 0, 0, Di-Dy.
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fia: A
a(ﬂ_b(ﬂ: [—-1-’—2—&-&, j-].,i 'f4,4 2 f],]]'

a®= (i1 s, fr-huz, fio)
p®=( 0, 0, D-D).

a®-b®= (fy fa, frhss )
4 = (fu fi2 fz,z]

d d’ d

b = (0, 0, Sl ]

_DZ
d
4~ pO = Sis ha S
d’ d’ d)

a0 = [f];zf'ffd,,zi 7 fl,l ;ff4,_4 } f44}

p9=( 0, 0 D-D,).

a{]g} —b(m) £ [ﬁ,z;fﬂ,d : .fl,l ;ff4,4 , .fL])

o [(FuFoa
d

’ ,fl,] '.f3,3 ¥ .f3,3}'

= 0 0,  D=D)

Sy faa

Y pan = [—T, fﬂ 'f3,3 » fll]

a'? = (f1,3 s Jia s fz,z)-

From the last line we see that

(2:1%1h a? = 4" . and we have thus obtained:
Theorem (2.1*.2)

Let w=4D*+d, |d|, DeN, d#1, d/D, then (BGEA) of
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a® = (fi 3, fia, fo2) with fis = d and the further notation of Theorem
2.1%.1, is purely periodic and the length of the primitive period s
m=12=3.4

Analyzing the vectors a”  v=0,1,2, .., 12 of the (BGEA) of
Theorem 2.1* 2 we make the following important observations:

0 The twelve vectors of the primitive period of the (BGEA) for the case n
= 4 consist of four cycles, each containing three vectors, namely ! ; =0,
12

s=0,1,23.

Definition 2.1*.1: A sequence of k - vectors is said to be a cycle of
length k if the (k +1)-st member is, up to a factor d™', the same as the starting
vector.

[0 If we disregard the factor d-1 in the components of the vectors we shall
call a vector a “modified” vector and denote it a™ .

Up to the factor d ', the components of the vectors in each cycle are the

same for a given 1, viz.

gBat) —g0GnH ¢ o =01,23;1=0,1,2

04 The companion vectors b (v=0,1, ..., 11) are all integral algebraic
. : . D] “‘D,' g
vectors, since their components are either 0, Dy - D, or T (i=2,3,4)

and d/D.
Specifically we have 6'=0, (i=1,2).
B{)=s(D,-Dy, s=1ord', k=234
04 For three cycles we have

. /:
o) g .af**? =_§1;i L §=(0,1,3);

while for one cycle we have

a-a* o = f, 4, (5=D);

























































