CHAPTER 10

THE SINGULAR SERIES OF THE
GENERALIZED FERMAT EQUATION

by Aldo Peretti

10.0. INTRODUCTION

In this chapter the results of Chapter 6 are used to give the infinitely many

solutions for the generalized Fermat equation.

10.1. INTERSECTION FORMULA

We denote the generalized Fermat equation by the Diophantine equation
(10.1.1) x& +yP =2¢
This equation is of the form
y3=y1+Yy2

and we wish to determine the number N(n) of solutions with

(10.1.2) y3=y1+yz<n
Then, an intersection formula could be:
(10.1.3) N() =3 a1 DAy hadglys)
where
1if u® < 441
I S

(with similar formulas for [Q/ﬂ and [g/ﬂ)

The sum in (10.1.2) extends to those values of yi, y», Y3 such that (10.1.2) is
fulfilled.

Actually , A([%/y_l]) does not vanish only if y; is an a-th power, A([Q/E}) does
not vanish only if y, is a b-th power, and A([g/y_g,}) does not vanish only if y; is a c-th

power. In this case each term in (10.1.3) contributes with a unity to the sum.
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The graph of N(n) consists of “squares” of width 1 and height 1 because of (10.1.4).

Hence, if the limits of integration do not touch these “squares”, we have:

(10.1.5) N(n) = ”A([e/y_l]).A([b Yy ]).A([%})dyl.dyz.dys

y3=Yy1+tyz,=n
In contrary case we have an asymptotic formula. Replacing y3 by its value y1+y2 we
reduce it to a double integral:

(10.1.6) N(n) :”A([e/y_l]).A([b yz]).A([m})dyl.dyz

yi+y2sn

10.2. ASYMPTOTIC VALUE OF A([a yl])

As was shown in Chapter 9 of this book, we have:

(10.2.1) A([g/ﬂ)zlimyi‘l
agg 9
where
g-1 —21‘(in
(10.2.2) S(a,q,y)= Y w(a,qg,h)e 9
h=0
(h,g)=1
and
q-1 2n1x3
w(a,q,h)= e 9 = Weyl sum
x=0

Of course, as A([a\/y_l]) approximates a discontinuous function, the series (10.2.1) is
conditionally convergent with very show rate of convergence.
(This is not the only formula we have available for A([%/y_l]) .Starting with the well

known Fourier development

[x]= X _1+£ 5 sin(2zmx)
2 maZ m

we could derive other similar formula)

10.3. ASYMPTOTIC FORMULA FOR N(n)
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Next, we replace (10.2.2) in (10.1.6) and we obtain:
1 ZW(a ql h) 27-;|ylf 1
(10.3.1) N(n)=[[= Zq—le Gy o
q 1

yi+yzsn

Z h szzg‘

bq2:1 4z

1 = ZW(b ds.h) 72m(y1+y2) hs 1

[ By +Y,)e dyydy,
=1 3

But, as occurs in the binary Goldbach problem (chapter 6 of this book), the dominant
term of the above expression is obtained when we choose 1=0,=03=q, h;=h,=h3=h,

and we have

(10.35) N(n)zizi{Zvv(a,q,h>zw<b,q,h>zw<c,q,h)}.-
abc’y gz ('h h h

—4nin(y1+yz) 1, 14 1
[ e % Tty (0P (v2)° dypdy,
yity2<n
The integral I(n) in the second one is of the Dirichlet-Liouville type and can be
evaluated by ref [27].

According to the theorem there we have:

h
—Amit—
(10.3.6) I(n) = F(l/a)l“(l/b)j q L/aslibel/c-2 g

I'1/a+1/b)
if M=1/a+1/b+1/c >1
Replacing this in (10.3.5) we obtain:

. 2w(aq,h)
> .

gq=1 q

I'l+1/a)l'(L+1/b)
cl'(l/a+1/b)

_4oiph
3mtq

(10.3.7) N(n) =

O‘—.:

d —Tit—
Z e 3 0 > h e 3 q tl/a+l/b+l/c Zdt

%qum 4ah Swegh) 4N

This formula can be written also as:
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r@+1/a)r@+1/b) " m1
10.3.8 N(n) = S(a,q,t) S(b,q,t) S(c,q,t)t" dt
( ) (n) cTWaxt1/b) £ (a,0,1) S(b,q,t) S(c,q,t)
where
4 . h
oo —rit—
S(a,q,t)= Y {w(a,q,h)e >
o=1

with like formulas for S(b,q,t) and S (c,q,t), and m = 1/a+1/b+1/c

We apply now the first mean value theorem of the integral calculus:

q q
[T).9(x)d(x) =FE)[g(x)d(x)  (p<&<aq)
p p

to (10.3.8) obtaining thus that

M-1
_T(+1/a)T(1+1/b) S(a,q,&) S(b,q,&) S(c,q,&) .

(103.9) N() cl'(1/a+1/b) M -1

valid for M > 1.

The product f the three S’s is evidently the singular series of the problem.
(10.3.9) proves the existence of infinitely many solutions if m > 1. For m < 1 nothing
can be asserted.

Example (10.3.1):

The equation

X1 +X,2 =2 <n

has
N(n) = %sz(z,q,&)S(c.q,&)n”c

solutions.

10.4. GENERALIZATION TO THE DIOPHANTINE EQUATION

280 =3 44+ Xyt

This is an equation of the type

(10.4.1) Ym =Y1+ Y2+t Ym <N
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and we obtain, as a straightforward extension of (10.3.9) that:

(10.4.2) N(n) =~ T+V/ay). T+L/ay) g
agl Way +..+1/ay,) @9,9,9).-S@m, 6,6 1

with
(10.4.3) m;=1/a; + ... + 1/ay
valid my>1
Example (10.3.2):
For the Euler equation
(10.4.4) 2 =x"+..+x,<n
we have that el
(1045)  N()= Sromedsmhca s oy

-1
k

This formula is valid for (m + 1)/k >1 orm > k - 1.

Hence the Euler equation always has some solution if m > k : an unproved

fact at present.

Remark that the Euler hypothesis that a k-th power is the sum of k k-th

powers, today has been verified numerically only for k = 3, 4, 5, 7 and 8. All the

attemps to incorporate k = 6 to the list have failed at present, spite the inmense power

of modern computers.



