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CHAPTER  10 

THE SINGULAR SERIES OF THE  
GENERALIZED FERMAT EQUATION 

by Aldo Peretti 

10.0.  INTRODUCTION

In this chapter the results of Chapter 6 are used to give the infinitely many 

solutions for the generalized Fermat equation. 

10.1.  INTERSECTION  FORMULA

We denote the generalized Fermat equation by the Diophantine equation 

(10.1.1)  cba zyx =+

This equation is of the form 
   213 yyy +=

and we wish to determine the number N(n) of solutions with 

(10.1.2)  nyyy 213 ≤+=

Then, an intersection formula could be: 

(10.1.3)  [ ] [ ] [ ])y().y().y()n(N c 3b 2a 1 ΔΔΔ=

where 

(10.1.4)  ( )
a a

1a a
1 1 1

1 if u y u 1y y y 1
0 otherwise

≤ < +Δ = − − =

(with similar formulas for [ ]b y  and [ ]c y ). 

The sum in (10.1.2) extends to those values of y1, y2, y3 such that (10.1.2) is 

fulfilled. 

Actually , [ ]a 1y(Δ ) does not vanish only if y1 is an a-th power, [ ])y( b 2Δ does 

not vanish only if y2 is a b-th power, and [ ])y( c 3Δ does not vanish only if y3 is a c-th 

power. In this case each term in (10.1.3) contributes with a unity to the sum.  
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The graph of N(n) consists of “squares” of width 1 and height 1 because of (10.1.4). 

Hence, if the limits of integration do not touch these “squares”, we have: 

(10.1.5)  ( ) ( ) ( )a b c
1 2 3 1 2 3N(n) y . y . y dy .dy .dy= Δ Δ Δ

  nyyy 213 ≤+=

In contrary case we have an asymptotic formula. Replacing y3 by its value y1+y2 we 

reduce it to a double integral: 

(10.1.6)  ( ) ( ) ( )a b c
1 2 1 2 1 2N(n) y . y . y y dy .dy= Δ Δ Δ +

  nyy 21 ≤+

10.2.  ASYMPTOTIC VALUE OF ( )a y1Δ

As was shown in Chapter 9 of this book, we have: 

(10.2.1)  ( )
1 1

a a

q 1

1 S(a,q, y)y y
a q

∞ −

=
Δ ≈

where 

(10.2.2)  
−

=

π−
=

1q

0h

q
hiy2

e)h,q,a(w)y,q,a(S

and 

   
−

=

π
=

1q

0x

q
hax12

e)h,q,a(w = Weyl sum 

Of course, as [ ]a 1y(Δ ) approximates a discontinuous function, the series (10.2.1) is 

conditionally convergent with very show rate of convergence. 

(This is not the only formula we have available for [ ]a 1y(Δ ) .Starting with the well 

known Fourier development 

   [ ]
∞

=

π
π

+−=
1m m

)mx2sin(1
2
1xx

we could derive other similar formula) 

10.3.  ASYMPTOTIC FORMULA FOR  N(n) 

(h,q)=1 
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Next, we replace (10.2.2) in (10.1.6) and we obtain: 

(10.3.1) 1
a
1

1
q
h

iy2

1q 1

h
1

ye
q

)h,q,a(w

a
1)n(N 1

1
1 −

π−∞

=
=

nyy 21 ≤+

1
b
1

2
q
h

iy2

1q 2

h
2

ye
q

)h,q,b(w

b
1 2

2
2

2

−
π−∞

=
. 

21
1

c
1

21
q
h

)yy(i2

1q 3

h
3

dy.dy)yy(e
q

)h,q,b(w

b
1 3

3
21

3

−+π−∞

=
+

But, as occurs in the binary Goldbach problem (chapter 6 of this book), the dominant 

term of the above expression is obtained when we choose q1=q2=q3=q, h1=h2=h3=h, 

and we have  

(10.3.5) .)h,q,c(w)h,q,b(w)h,q,a(w
q
1

abc
1)n(N

h h hq 3
≈ ⋅

       ⋅
1 2

1 2

h 1 1 14 i (y y ) 1 1 1q a b c
1 2 1 2 1 2

y y n
. e (y y ) (y ) (y ) dy .dy

− π + − − −

+ ≤
+    

The integral I(n) in the second one is of the Dirichlet-Liouville type and can be 

evaluated by ref [27]. 

According to the theorem there we have: 

(10.3.6) 
hn 4 it

1/ a 1/ b 1/ c 2q

0

(1/ a) (1/ b)I(n) e t dt
(1/ a 1/ b)

− π
+ + −Γ Γ=

Γ +
  

if   M = 1/a + 1/b + 1/c  > 1 

Replacing this in (10.3.5) we obtain:  

(10.3.7) q
h

3
4 ith

1q

n

0
e

q

)h,q,a(w

)b/1a/1(c
)b/11()a/11()n(N

π−∞

=
⋅

+Γ
+Γ+Γ≈

. h

q 1

w(b,q,h)

q

∞

=

q
hit

3
4

e
π−

. 
∞

=1q

h
q

)h,q,c(w
q
hit

3
4

e
π−

. 1/ a 1/ b 1/ c 2t dt+ + −

This formula can be written also as: 
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ny...yyy m211m ≤+++=+

(10.3.8) dtt)t,q,c(S)t,q,b(S)t,q,a(S
)b/1a/1(c

)b/11()a/11()n(N 1m
n

0

−

+Γ
+Γ+Γ≈

where 

∞

=

π−
=

1q

q
hit

3
4

e)h,q,a(w)t,q,a(S

with like formulas for S(b,q,t) and S (c,q,t), and m = 1/a+1/b+1/c 

We apply now the first mean value theorem of the integral calculus: 

ξ=
q

p

q

p
)x(d).x(g)(f)x(d).x(g).x(f      )qp( ≤ξ≤

to (10.3.8) obtaining thus that 

(10.3.9) 
M 1(1 1/ a) (1 1/ b) nN(n) S(a,q, ) S(b,q, ) S(c,q, )

c (1/ a 1/ b) M 1

−Γ + Γ +≈ ξ ξ ξ
Γ + −

valid for M > 1. 

 The product f the three S’s is evidently the singular series of the problem. 

(10.3.9) proves the existence of infinitely many solutions if m > 1. For m  1 nothing 

can be asserted. 

Example (10.3.1): 

The equation 

nzxx c2
2

2
1 ≤=+

has 
≈)n(N c/12 n),q,c(S),q,2(S

4
ξξπ

solutions. 

10.4.  GENERALIZATION TO THE DIOPHANTINE EQUATION  
          m10 a

m
a

1
a x...xz ++=   

 This is an equation of the type 

(10.4.1) 
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1m
n),q,a(S)...,q,a(S

)a/1...a/1(a
)a/11()...a/11( 1m

m0
m10

m1
−

ξξ
++Γ
+Γ+Γ −

nxxz k
m

kk ≤++= ...1

1
k

1m
n),q,k(S

)k/m(k
)k/11(

1
k

1m

1m
m

−+ξ
Γ

+Γ
−+

+

and we obtain, as a straightforward extension of (10.3.9) that: 

(10.4.2) N(n) ≈

with 

(10.4.3) m1 = 1/a1 + … + 1/am

valid  m1 > 1 

Example (10.3.2):

For the Euler equation 

(10.4.4) 

we have that 

(10.4.5) N(n) ≈  

This formula is valid for (m + 1)/k > 1 or m > k – 1. 

Hence the Euler equation always has some solution if m  k : an unproved 

fact at present. 

Remark that the Euler hypothesis that a k-th power is the sum of k k-th 

powers, today has been verified numerically only for k = 3, 4, 5, 7 and 8. All the 

attemps to incorporate k = 6 to the list have failed at present, spite the inmense power 

of modern computers. 


