
CHAPTER  3 

SOLUTION  OF  GOLDBACH’S  CONJECTURE 

by Malvina Baica 

3.0.  INTRODUCTION 

 An exact expression is derived for  the  Hardy- Littlewood  function  v(t)  by 

means of the Laplace transform. The application of the generalized final value 

theorem allows us to prove a result that essentially is the hypothetical asymptotic 

formula for the Hardy-Littlewood function v(t), with  corresponding  remainder term. 

Goldbach’s conjecture is an open problem from 1742, when Christian 

Goldbach, in a letter to Euler enunciated it as a conjecture that “every even number 

greater than two can be expressed as the sum of two primes”. 

 However Descartes had conjectured it before Goldbach, so that at present it is 

in fact misnamed. 

3.1.  DERIVATION OF A BASIC FORMULA 

Using the  Chebishev  function ( )uϑ  defined by  

(3.1.1)   ( )
p {u}

u log p
≤

ϑ =

where p denotes the prime numbers,  we have:  

(3.1.2)   ( ) ( ) ( ) log p if [u] p
u u u 1

0 in any other case
=

Δϑ = ϑ − ϑ − =

Hence, if  we form 

(3.1.3)   v (t)  =  Δ ϑ (u1 ) Δ ϑ ( u2 )  

where the sums are extended to those values of  u1 and  u2  such that 

   t = u1  + u2

evidently, ν ( )t is the Hardy – Littlewood function 

(3.1.4)   
=+

=ν
t 2p1p

21 p log  p log      (t) 
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Immediately, from (3.1.3) we can see that we also have 

(3.1.5)   ( ) ( )
1 2 1

1 2
u t u t u

(t) u u
< < −

ν = Δϑ Δϑ

or 

(3.1.6)   ( ) ( )
1 1

1 1
u   t u   t

 (t)      u     t u
≤ ≤

ν = Δϑ Δϑ −

In fact, in the first sum of  (3.1.5) we choose arbitrarily any integer  u1 t<  ; 

while in the second we are forced to restrict the sum to the  u2  <  t-u1. 

As  ϑ  (u)  is a step function the sums on the right-hand side of  (3.1.6)  are 

also step functions, that can be replaced by the corresponding integrals, so that we 

can write: 

(3.1.7)   ν (t)  =  ϑΔ
x

0
( )u 1   du  + ϑΔ

x

0
( )t u−  du 

The passage from formula (3.1.6) to (3.1.7) is given in full detail in Chapter 4, 

Section 2 of this book. 

Evidently, the right hand member is, by definition, the convolution of the two  

functions. 

(3.1.8)   ( ) ( ) (t)     u      u 1 ν = Δϑ ∗ Δϑ +

with current  notation. 

Consequently, if we take the Laplace transform  L  of  both sides, by usual 

rules, we obtain 

L{ } ( ){ } ( ){ }  (t)        u 1 uν = Δϑ + Δ ϑ =L   L          

( ){ } s    u  .e−= Δϑ 2L

(3.1.9)   L { } ( ){ } s  (t)        u  .e−ν = Δϑ 2 L

      and this is our basic formula  needed. 

3.2.  THE EVALUATION OF  L ( ){ }uΔϑ

From the definition of the Laplace transform we deduce:  

(3.2.1)   [ ]{ } u   ϑL     = ps1   logp .e
s

−    

From this it follows that 
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(3.2.2)   L ( ){ }
s

ps

p

1 e   u        log p  e
s

−
−−Δ ϑ =

when we take into account  ( 3.1.2 ) | x | - 1 

3.3.  THE POLES OF  f (s)  =  −−−−

p

pspelog  

Setting   xe s =−  we have : 

(3.3.1)   (x) F     xp log    e  p log
p p

pps ==−

It is known that  F (x)  has infinitely many simple poles  on the circle  1  x = .  

Hence, f (s) has infinitely many  poles on the line   σ = Re (s) = 0  

For further calculation using with the Laplace transforms, we are interested in 

the residues of these poles at  x e ih q= 2π /   as a primitive root of unity of order q. 

Consequently, we must assume that  (h,q) =1 

The answer is given by theorem 248,  Ch 5 , p.212 of  [25] 

(3.3.2)   F (x) ~ 
)e x( (q)

e (q)       
) ex (1  (q)

(q)
ih/q2

ih/q2

ih/q2 π

π

π− −ϕ

μ−=
−ϕ

μ

where  (q)  (is Möbius function ) =  (− 1) r   if  q  has  r  factors and   (q)ϕ  (Euler`s 

function) is the number of integers ≤   q  and coprime with q.  

More exactly, as h can take  the values  h = 0, 1, 2, ... q –1 with the restriction 

(h, q ) = 1, we can write that  F(x),  in the surroundings of the ϕ (q) primitive roots of 

unity of order q, is as 

(3.3.3)   F (x) ~ −  
) e  x (  (q)

e  (q)     ih/q2

ih/q21q

1q)(h, ,0h π

π−

== −ϕ

μ

When we extend this reasoning to all the roots of order  q ≤  N, we get the 

approximation  

(3.3.4)   F (x)  ~  −   
=

−

==

N

1q

1q

1q)(h, ,0h
    

)e  x( (q)

e  (q)
ih/q2

ih/q2

π

π

−ϕ

μ

 If we desire an error term for this approximation, we can use  the remainder 

term given by theorem 248  of [25]. However, for our purposes it is sufficient  to put 

in evidence the number and the   kind of the poles of F(x) only. 
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 Next if we put  x = e –s  in ( 3.3.4 ), we obtain: 

(3.3.5)   F(e-5 ) = f (s) ~ −
=

N

1q

−

==

1q

1q)(h,,0h
   

)e e (  (q)

e  )q(
ih/q2s

ih/q2

π−

π

−ϕ

μ

 Again  here we are interested in the calculation of the poles of   f (s ), and in 

the  value of their residues. 

We have that the residue of  

   g (s) =  
ee
1

q/ih2s π− −

at the simple pole  s = −2 πi h / q   is  

 - e -2πi h / q  

Thus we can write  ( 3.3.5 ) alternatively  as  

(3.3.6)   f (s)  ~  
=

−

==

N

1q

1q

1q)(h,,0h
    (q)

(q) (s 2 ih/q)
μ

ϕ + π

The right hand side of the formula ( 3.3.6 ) is known as the Farey dissection  of order  

N  of  f(s). 

Replacing ( 3.3.6 ) in  ( 3.2.2 ) we get: 

(3.3.7)   L { ( ) u }Δϑ ~
s
e1 s−−

=

−

==

N

1q

1q

1q)(h, ,0h
    

(q)
(q) (s 2 ih/q)

μ
ϕ + π

and taking into account formula ( 3.1.9) and (3.3.7)  we have: 

(3.3.8)   L{  (t)  }ν ~
2s

s
s
e1.e − −

−
2q 1N

q 1 h 0, (h,q) 1 

(q)     
 (q)  (s  2 ih/q)

−

= = =

μ
ϕ + π

If we wish to  pass from the  asymptotic sign  to the  equality  sign, we must  

write: 

(3.3.9)   L{ } ( t )ν =
2s

s
s
e1.e − −

− { }2
N  N lim  B  (s) →∞

where  (s) BN   is given in the second bracket on the right  hand side of  ( 3.3.8 ). The 

importance of  formula ( 3.3.8 ) lies  in  the  fact  that  it exhibits  the  poles of   L

{ }) t ( ν , which is the basis for the evaluation of  (t) ν   by  the residues method. 

3.4.  ABELIAN AND TAUBERIAN THEOREMS  CONCERNING THE  
         LAPLACE  TRANSFORM 

Suppose  that   f (s)  =  L { }(u) F    and  g(s)  =  L { }(u)G   and 



SOLUTIONS OF GOLDBACH´S CONJECTURE 41

(3.4.1)  f (s)  ~  g (s)  when  s +→ 0

means that   
2 2

2 2
q > N d / t  N / d < q , ( q , t ) = 1

 ( q )  ( d )  ( q )    C q  ( t )   =      .  
j ( d ) ( q ) j ( q )

∞

ϕ

and  similarly 

(3.4.2)   F (t) ~ G (t)  

when  t ∞→   means that  

1    (t)(t)/G  F  lim
t

=
→∞

An implication from (3.4.2) to (3.4.1) is valid under rather general 

assumptions  (that are fulfilled in our case), and is called an “Abelian theorem”. 

In  the theory of the Laplace transform it is called the generalized theorem of 

the final value, which also is valid  even for discontinuous functions. 

The converse implication from (3.4.1 ) to (3.4.2 ) is true  under additional 

assumptions  only, and it is named  a “Tauberian Theorem”,  which is available a 

wide variety of cases. 

 However, we shall not  appeal to such kind of theorems. 

3.5.  APPLICATION OF THE ABELIAN THEOREM TO (3.3.8)

Let 

(t)   lim    (t) 
t

ν=ν
∞→

∗

such that  
(t)∗ν  ~  (t) ν

Then, by the Abelian theorem we get: 

L { }   lim     (t) 
t ∞→

∗ =ν L { } (s) B  
s
e  1 .e  lim      (t)  2

N

2s
s

0s

−=ν
−

−
→

where  B N (s)  is  as defined before in  ( 3.3.8 ) 

This reduces to : 

(3.5.1)   L { }  (t) =ν∗ (s) B   2
N

from which it follows 

(3.5.2)       (t) =ν∗ L −1  { } ) s ( B 2
N
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1 2

1 1 1 1 2 2 2, 2

q  1 q  1N N
1 2

q  1 h  0 ,(h q ) 1 q 1 h 0, (h q ) 1 1 2 1 1 2 2

 (q )   (q )
               

 (q )   (q )  ( s  2 ih /q  )  ( s  2 ih /q  )

− −

= = = = = =

μ μ
+ =

ϕ ϕ + π + π

More exactly, the passage from ( 3.5.1 ) to ( 3.5.2 )  should  by  written  as  

(3.5.3)   (t) m
∗ν  =       

2
 ) 0 t(     ) 0  t( =−ν++ν ∗∗

L −1 { } ) s ( B 2
N

because ν∗(t) is a discontinuous function  

3.6.  EVALUATION OF  (t) m
∗ν ACCORDING TO (3.5.3)

Due to a well known theorem [51], we  have :  

 (3.6.1)   
c i

2 ts
m N

c i

1 (t)       B  (s)  e   ds
2 i

+ ∞
∗

− ∞
ν =

π

where the contour between    c ∞± i    is a Bromwich contour, that contains all the 

poles  of   BN
2 (s). 

In the usual way, it is evaluated as the sum of the residues of the integrand at 

their poles, within the Bromwich contour. 

Now, we have that : 

(3.6.2)   B (s) 2
N =

2

2 2
q 1 h 0,(h ,q ) 1

 (q)      
 (q)  ( s  2 ih / q )= = =

μ +
ϕ + π

=     
)A  s (  )q(

(q)     
N

1q

1q

1)q,h,(0h 22

2

=

−

== +ϕ

μ + 

  +
+

−
+−ϕϕ

μμ

211 221
21

A  s
1

A  s
1  

) A A (
1  

) (q )(q
)(q )q(

  

with the obvious notation for  A, A1, A2  and the sums. 

The residues of the integrand at the double poles 1/ ( s+A)2 are easily found 
to be 

At
2

2
e  t  

(q)

(q) −

ϕ

μ

The residue of the integrand at the simple pole  1/ (s+A1)  is found to be 

 t1A

1

1 e  
)(q 
)(q −

ϕ
μ

Hence, collecting partial results, we have : 
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1 11 2 1 2

1 1 1 1
1 1

q 1 q 1A t A t A t A t
1

h 0,(h ,q ) 1 h 0,(h,q) 12 1 2 1
(h ,q ) 1

 (q ) N (N 1)e   e e   e            
A   A A A

− −− − − −

= = = =
=

ϕ −− −< ≤
− − π

(3.6.3)   m (t)∗ν =  =     
(q)

(q)
2

2

ϕ

μ t  . +−Ate

+ 
 )(q   )(q
)(q   )q(

21
21

ϕϕ
μμ ⋅

12

 t2A  t1A

A  A
e  e

−
− −−

  

In a more simplified way, we can argue alternatively that the inverse Laplace 

transform of the finite sums in  ( 3.6.2 ) are the sums of the inverse Laplace 

transform of its terms, and after that we appeal   to the  tables. 

The quadruple sum in  (3.6.3) can  be maximized as  follows: The  minimal 

value of  A2 – A1   is  ) /qh q / h ( i2 2211 −π   where both fractions are contiguous Farey 

fractions. 

It is known  [47] that 

min  
1) (N N

1    
q
h

q
h

2
2

1
1

−
=−

so that 

2
1)N(N     

A A
1

12 π
−≤

−

Furthermore 
2      e e   t2A t1A ≤− −−

Hence:  

with a similar result for the sum along h2. 

It follows from the preceding inequalities: 

   
A A
e e   

)(q  )q(
)(q  )(q

  
1q 1h 2q 2h 12

 t2A t1A

21
21

−
−

ϕϕ
μμ −−

< =−
π

<
==

)1N(N 1    22N

12q 2

N

11q

= 24
2

1)(N N1 −
π

  <   
2

6N

π

So that  ( 3.6.3 )  can be written as : 

(3.6.4)   
=

−

==

∗

ϕ

μ
=ν

N

1  q

1q

1q)(h, ,0 h 2

2
m

)q(

)q(
       (t) 

6
At

2
Ne .t    − + δ
π

where  –1 < δ < 1.  But  
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q 1
At

h 0,(h,q) 1
e

−
−

= =

is Ramanujan’s sum Cq (t). 

Hence  (3.6.4) can be  written as: 

(3.6.5)   
2 6N

m 12 2
q 1

 (q) N (t)      Cq (t) .t    
 (q)

∗

=

μν = + δ
ϕ π

where  -1 < δ1  < 1. 

3.7.  THE EVALUATION  OF m (t)∗ν  AND Nf (t)

Once we have evaluated 

   m (t)   ∗ν = L2  { }N  B (s) 

it will be easy to evaluate  

(3.7.1)   f N (t) =   L 1−
2s

N 
 1 e    B (s) 

s

−−

whose connection with ( 3.3.9 ) is evident  

Let 

   L-1 ( )1 1 f  (s)   F  (t)=    and      1
2 2L ( f  (s) )    F  (t)− =

where 

(3.7.2)   f1(s) = 
s 2

2
( 1  e )   

s

−−   and  f 2 (s) = 2
NB (s) 

Then     F2 (t) =  m (t),∗ν  as  was seen before 

In regard  to 

f1 (s) =   
2s1 e

s

−−

and  from the tables of  [46], Vol. 5 p. 59 formula (15) we obtain: 

(3.7.3)   1F  (t)    = L−1
s

2
( 1 e      

s

−− = <<−

<<

otherwise0

2t1ift2

1t0ift

By the convolution theorem for  the inverse Laplace transform we have: 
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f N (t) =  L { }
t

1
1 2 1 2

0

  f  (s).f  (s)     F  (u)  F  (t u) du− = −

Replacing  the values given by  ( 3.7.2 ) and  ( 3.7.3 ) in the above transform 

we obtain: 

(3.7.4)   
t

N 1 m
0

f  (t)     F  (u)  (t u) du   ∗= ν − =

     
1 2

m m
0 1

u   (t u) du     (2 u)   (t u) du∗ ∗= ν − + − ν −

3.8.  FINDING THE LIMIT OF  v m (t)∗ WHEN  N→→→→
Now we find: 

(3.8.1)   mN
 (t)   lim     (t)∗

→∞
η = ν

For this we need:  

Lemma (3.8.1).  This lemma proves: 

(3.L1)   
2 3

2
q N 1

 (q) log N     Cq (t)     10240  t   
N (q)

∞

= +

μ <
ϕ

Proof of lemma ( 3.8.1 ) According to [57], p.35 formula (3.23) we have: 

(3.L2)   
2 2

2 2
q>N d/t  N/d<q, (q,t)=1

 (q)  (d)  (q)    Cq (t)  =     .  
j (d) (q) j (q)

∞

ϕ

Now 

(3.L3)   2 2 2
N / d q, (q,t) 1 N / d q, (q,t) 1 N/d q

 (q) 1 1               
(q) (q) (q)< = < = <

μ < <
ϕ ϕ ϕ

  

But 

(3.L4)   n n(n)
2 log n 8log n

ϕ > >
+

for every n > 1  [21], so that 

(3.L5)   
2 2

2 2 2
N N N  q   q   1d d d

1 log  q log  u     64        64       du
 (q) q u

∞

< < −

< <
ϕ

and 
2 2 2

2
Q

log  u log Q 2 log Q log Q    du            3    
Q Q Qu

∞

= + <          if    Q  >  e2

Hence 
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N
2 2 2d

2 2
N N N  1   1d d d

log  u log  u log  u     du        du        du  
N / du u

∞ ∞

− −

= + <

(3.L6)   
2 2 2

2
log  ( N/d   ) log  ( N/d ) log  ( N/d )    3      5  

N/d N/d( N/d   )
− ϑ + <

− ϑ
  

where   0 < ϑ  < 1 and the last inequality  holds for every N/d  

Replacing it in (3.L5)  yields:  

(3.L7)   
2

2
N/d q

 1 log  ( N/d )         320  
N / d(q) <

<
ϕ

From  ( 3.L2), (3.L3 ),  and  ( 3.L7)  follows: 
2 2 2

2
N q d / t

 (d) (d) log  ( N/d )     Cq ( t )            320        
 (d) N / d (q)

∞

<

μ μ< <
ϕϕ

(3.L8)   <  320
2 2

d/t d / t

8 log d log  ( N/d ) log d  log  ( N/d )          2560    
d N/d N

= <

<  2560 
3 3

d/t

log  ( N/d ) log  N       2560 d (t)  
N N

<

where d (t) denotes the quantity of divisors of  t.

According to [25], holds that 

(3.L9)   d (t)  <  t

Replacing this value in  ( 3L8 ), we obtain ( 3L1 ). 

Combining ( 3.6.5 ) and Lemma ( 3.8.1 ), we get 

(3.8.2)   
2 6 3

1+
m 1 22 2

q 1

 (q) N log  N (t)    Cq (t). t          10240 t
N (q)

∞
∗

=

μν = + δ + δ
ϕ π

If we choose 

   N = 5,0246  t 1/7 + 

then the second and third terms are equal (except for the śδ )  

In order to round the calculations we adopt 

(3.8.3)   N  =  5  t 1/7 + 

Then (3.8.1) becomes 

(3.8.4)   
2 6

6/7
12 2 

q 1

 (q) 5 (t)      Cq (t).t      t     
 (q)

∞

=

μη = + δ +
ϕ π



SOLUTIONS OF GOLDBACH´S CONJECTURE 47

  ( )36/7
2

10240   t   log 5   log t
5

+δ + ε

Thus, in our evaluation we have included every possible pole at the primitive 

roots of unity. 

Now 
6

6/7 2/7
1 22

5 10240  t    t
5

δ + δ
π

( )3 log 5   log t+ ε < 6/ 7 3
4 3600  t  log  tδ

(-1 < i  1 )δ <    for   t ≥  6 

Hence ( 3.8.4 ) reduces to;  

(3.8.5)   
2

6 / 7 3
4 2

q 1

 (q) (t)        Cq (t).t    3600  t  log  t
 (q)

∞

=

μη = + δ
ϕ

We know that due to the multiplicative character of its terms, the infinite 

series can be transformed into an infinite product, and therefore by  [14] the  final 

result is: 

(3.8.6)  
2

2 2p 3 p/tq 1

 (q) 1 p 1    Cq (t)    2    1             
p 2 (q) (p  1)

∞ ∞

==

μ −= Π − Π =
−ϕ −

p / t

p 11,3203    
p 2

−= Π
−

Thus   (t)η   consists of a first dominant discontinuous term 

(3.8.7)   D (t)  =  1,3203  
p / t

p 1    t
p 2

−Π
−

and a second remainder term C (t), for  which we have the bound 

(3.8.8)   C (t)  =  6 / 7 3
4 3600  t  log  tδ

with 

(3.8.9)    (t)    D (t)    C (t)η = +

 Recall that on account of  ( 3.5.3 )  and  ( 3.8.1 )  we have: 

N
 (t)    lim

→∞
η =  L { }1 2

N  B  (s) −

3.9.  BOUNDS FOR ( t )ν

From ( 3.7.4 ), letting  N → ∞  due to ( 3.7.1 )  and  (3.3.9) we obtain: 
1

NN
0

 (t  0 )   (t 0 )lim   f  (t)         u  ( t u ) du    
2→∞

ν + + ν −= = η − +
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2

1

 (2 u)   (t u ) du+ − η −

Here we apply ( 3.8.9 ) in order to obtain : 

(3.9.1)   
1 2

0 1

 ( t 0 )   (t 0 )    D (t)   u.du  D (t 1 )   (2 u) du  
2

ν + + ν − = + − − + + 

   + 
1 2

0 1

u C ( t u ) du    ( 2  u )  C ( t u ) du− + − −

The last line can be evaluated by the mean value theorem of  integral  

calculus, and we have  

5 5
 ( t 0 )   ( t 0 ) D (t)  D ( t 1 )         C (t   )   

2 2
ν + + ν − + −= + δ − δ + ( ) ( )66 1tC1 δ−−δ+ = 

     =  D ( t  0 )  D ( t 0 )
2

+ + −  +  73   C (t)δ  ,       

0 < 7  1δ < , 5 60   ,    1< δ δ <

Hence: 

7
3 (t)  D (t)     C (t)
2

ν = + δ

Appealing again to ( 3.8.7 )  and  ( 3.8.8 )  for t even, we have:  

6 / 7 3
7 4 p / t

p 1  (t)    1,303 t     t    1,5     3600  t  log  t
p 2

−ν = Π + δ δ
−

from  which follows the lower bound 

(3.9.2)   6 / 7 3 (t)    1,303  t    5400  t  log  tν > −

for  every   t ≥ 6 . 

At  this stage we can ask ourselves which is the greatest value that  (t)ν  can 

assume in the case that there is only one solution.

This solution can range from  p1 = t − 3   p2 = 3  up to p1 = t/ 2     p2 = t/2 . 

Hence  

max v(t) = log2  t/2,  

or, better, since we must take into account  the order (because the solution p 1 + p2   is 

counted differently from p2 + p1 ) . Thus  max (t) = 2 log2 t/2 

Consequently, if we know that  

(3.9.3)   v(t) > 2 log2 t/2 
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we can be sure that there is at least one solution.

Replacing the  lower bound ( 3.9.2 )  in ( 3.9.3 ) we have: 

(3.9.4)   1,303 t – 5400 t6/7  log3 t > 2  log2 t/2  

which must hold if there is at least one solution. 

Now, it is a numerical fact that  ( 3.9.4 ) holds for   t > 1075. 

The existence of the solutions has been proved  up  to  t = 4 . 1011 [50]. 

3.10.  CONCLUSION  

Using the same technics, we can prove that every sufficiently large odd 

number > 5 is the sum of  three primes. 
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