12. PARATRIGONOMETRIC FUNCTIONS
RELATIVE TO THE FINITE SPIRALS
AS THE BASIC TRIGONOMETRIC FIGURES

12.1. Introduction

In Chapter 6 we analyzed the paratrigonometric functions represented in the
Chartesian coordinates and we showed the connection between these functions and
The Basic Trigonometric Figures (BTFs). These last ones in their turn were also
represented in the Chartesian coordinates.

We also, recall that the fundamental relations in the Paratrigonometry are the
following:

Ispreal +|cpneal* =1 (12.1)
poa=tga (12.2)

where spr, a is “the paratrigonometric sine of order & of the angle «”, ¢pn a is
“the paratrigonometric cosine of order & of the angle @” and tpr, @ is “the

paratrigonometric tangent of order k of the angle & ”. The order k can have values
in the domain 0<k <co. Important particular cases are represented when k = 2
(The Classical Trigonometry — CT) and k= 1 (The Quadratic Trigonometry — QT).

The Basic Trigonometric Figures (BTFs) of the corresponding
paratrigonometric functions are in their turn expressed in Chartesian coordinates by
the relation:

[y!k +|x|k =l (12.3)

In the CT (k = 2) the corresponding BTF is a circle having its radius R = 1.
In the QT (k= 1) BTF is a rhombus with all its angles being right angles, which is
inscribed in a circle of the radius R = 1. For any other values of k the BTFs are
“rhombuses™ with curved sides, which are convex for 1<k <w and concave for
0<k<l.

All of the BTFs prescntly studied in regard with the PRT are symmetric with
the Chartesian coordinate axis Ox — Oz. )

We intend to study further these non-symmetric BTFs corresponding to
these axes. We will bring in our analyse those BTFs of spiral form, which develop
between the coordinate point (x = 1; y = 0), for =0 and the point of the
coordinates (x=0; y=0), for a=2-K -7, K an integer (K =1, 2, ..., etc.).
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Evidently, for the best representation of a spiral we are going to use the polar
coordinates.

In Chapter 10 we used the polar coordinates to represent some
paratrigonometric functions.

In what follows, we will analyze some paratrigonometric functions which
are related with these BTFs under the form of finite spirals, that is that the spirals
start and end in very well defined points in the coordinates system, as we have
shown above.

12.2. Archimedean Spiral, Logarithmic Spiral and Parabolic
Spiral having BTFs role in the Paratrigonometry

The classical mathematical expression for the Archimedean Spiral in the
polar coordinates is:

p=c-a (12.4)
where p is the polar radius, a is the angle formed by the polar radius with the

polar axis Op (see Fig. 12.1) and ¢ is a constant. In other words, the polar radius
varies directly proportional with the angle « .

i

Fig. 12.1. The Archimedean Spiral

We can see that the Archimedean Spiral, expressed in this way — see (12.4), starts
from the pole O (for & =0, p=0) and tends towards infinity (for « =0, p=0).

In order to establish the expression for the polar radius which decreases from
p=1 (for ¢ =0)downto p=0 (for « =2-K ), as we have shown above, we

will use for the corresponding spiral (which we name “finite™) the relation:
p=l—(a/2r-n) (12.5)

where # represents the number of the complete spires (by 27 rad. each) developed
between p=1 and p=0.In Fig. 12.1 a such spiral is represented for which n = 4.
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This spiral is developing in a trigonometric direction from p=1 (for a=0)
to p=0 (for @ =87 ). For a >8x the polar radius p becomes negative and this

representation does not have any sense.

Another very well known spiral in Mathematics is the Logarithmic Spiral.
This one when the angle @ increases in a trigonometric sense is represented by the
relation:

p=c-e ™ (12.6)
where ¢ and m are constants greater then 0 (zero), and « is the angle formed by the
polar radius p with the polar radius Op, as we previously had shown. Since we set
the condition that for @ =0 to have p =1, from the relation (12.6) results that
¢ =1 and the relation (12.6) results that ¢ = | and the relation (12.6) becomes:

p=e M. (12.7)

The polar radius o tends to 0 (zero) when « tends to +co. In other way

saying, the polc O is the asymptotic pole where the spiral is approaching more and
more for a increasing to +o, but O is never touched by the spiral. This “comes”
from p=o when «=-w and passes through the point (¢ =0; p=1), towards
the pole O, which can be theoretically touched for a =+ .

Compared with the previous situation (Archimedean Spiral) we accept that
in function of the number of the spirals (of 27z rad. each) from which we establish
that the entire spiral is formed, the value of p is very small and we denote it by

Ap . In this case we have:
Ap =g 2FmH (12.8)
In order to determine m we take logarithm in the relation (12.8) and we
obtain:
m=—(InAp)/2x-n. (12.9)
Because in every case Ap <1 then the values of /n will be positive.
Accepting n =4, as in the Archimedean Spiral case, we have:
m=—(InAp)/8x. (12.10)
Considering for example, Ap =0.025 we obtain m=0.147.

A Logarithmic Spiral conform the relation (12.7) and having four spires
(n=4) and thus m =0.147, is represented in the Figure 12.2.

A spiral with a similar form to the Archimedean Spiral is the one represented
by the following equation:

p=a-a? +b (12.11)

where a, b and p are constant values.
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Fig. 12.2. The Logarithmic Spiral.

Because the variable « is raised to a power (p), we namc the corresponding
curve to be the “Parabolic Spiral”.
If in the relation (12.11) we make @ =0, then we get 6=1 (in order to have

p=1). If for a=2n-n, we accept p=0, then a=—(1/27-n)?. Thus the
equation (12.11) becomes:
p=1-(al2x-n)?. (12.12)
For p = 1 the relation (12.12) is identical with the relation (12.5). If we
accept n =4, as above, the relation (12.12) becomes:
£=1-(0.0398-a)?. (12.13)

The value for p can be chosen in a suclh a way that the curve of the function
p(a) can mathematically model in a very accurate way a specific fenomenon (in
Physics, for example) which can be represented by the relation (12.13).
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Fig. 12.3. The vector radius as a function of the angle a, p(a) for diverse spiral.

In the Figure 12.3 we represent the curves for the function p(a) expressed

by the above relations for n = 4.

Thus: >

- the curve a (straight line), relation (12.5) for » = 4 and the relation (12.13)
for p = 1, respectively;

— the curve b, the relation (12.7) for m = 0.147 corresponding to Ap =0.025

— see relation (12.10);
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— the curve ¢, relation (12.13) for p = 2;

— the curve 4, relation (12.13) for p = 0.4.

The value p = 0.4 above was chosen by trying, so that the form of the curve
d to be the closest to the form of the curve b.

To some Basic Trigonometric Functions (BTF) having spiral forms,
analyzed above, exist corresponding specific trigonometric functions, and this will
be discussed in the next chapter.

12.3. The Paratrigonometric Spiral Functions

We call the Paratrigonometric Spiral Functions (PSFs) those
paratrigonometric functions, which are referred to BTFs with a spiral form. We
will analyze those PSFs, which are correlated with the spirals presented in the
previous chapter as BTFs.

We denote by Spsa the function “Spiral Paratrigonometric Sinus
of the angle «”, with Cpse the function “Spiral Paratrigonometric Cosine
of the angle ¢ ” and with Tpse the function “Spiral Paratrigonometric Tangent
of the angle «”.

Referring to the Figure 12.1, we see that Spse is equal with the quotient
between the magnitude of the line segment MM' and the vector radius p. The
function Cpsa is equal with the quotient between the magnitude of the line
segment OM' and the vector radius p. Between these functions therc are the
following relations:

[Spscf)2 + (Cpsar)1 ==p2 (12.14)
SpsalCpsa=Tpsa=tgc. (12.15)

We sec that these relations are similar with the fundamental relations from
the Paratrigonometry, which are in relation with the BTFs symmetric to the
coordinate axis Ox — Oy [6]. There is also, a similarity of the relation (12.14) with
the fundamental ralation from the Classical Trigonometry (CT):

2

sin af+cosza:1. (12.16)

The distinction between these two relations consists from the fact that, in this

case which we are analyzing now, in the right side of the equality instead of a
constant (number 1) appears p, which is an algebraic function of « .

Also, from Figure 12.1 we observe that the functions Spsa and Cpsa can
be expressed by the functions sina and cosa (and p) in this way:

Spsa = p-sinc (12.17)
Cpsa=p-cosa . (12.18)
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Fig. 12.5. The functions Cpsea.

In the Figures 12.4 and 12.5 the function Cpso is represented for the
following situations: '

* in Figure 12.4:

— a — for the Archimedean Spiral, as a BTF (see Figure 12.1);

— b — for the Logarithmic Spiral, as a BTF (see Figure 12.2);

* in Figure 12.5:

— ¢ — for the Parabolic Spiral, (with p =2) as a BTF;

— d - for the Parabolic Spiral, (with p = 0.4) as a BTF.

It is interesting to remark that if we develop the relation (12.18), using for p

the relation (12.7) which is characteristic to the Logarithmic Spiral, we obtain:
Cpspa=e "% .cosa . (12.19)

We used the notation Cps; & in order to remark the fact that the Cpsa
1s to the reference for a Logarithmic Spiral (the index L), as BIF: by analogy,
we will also use the notations Cps,a when we refer to an Archimedean Spiral
(the index A), as BTS and respectively Cpspa when we refer to a Parabolic Spiral
(the index P), as BTF.
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The relation (12.19) is exactly the equation for the Amortized Oscillations
from Physics and Mechanics respectively if we refer to the Mechanical Systems
[23], [24].

It is known that, the mathematical expression which characterizes the
Amortized Vibrations is:

x=xq-exp(-h-t)-cos(w-t+¢) (12.20)

where x is the elongation, xo is the variations amplitude, 4 is the amortization
factor, # is the time, w is the pulsation (circular frequency), ¢ is the initial phase
(diphase). For simplification if we accept xg =1 and ¢ =0, we obtain the relation:

x=exp(-h-t)-cos(w-1). (12.21)

This relation is similar with the relation (12.19), if we consider x=Cps; «,
h-t=m-a and @-t=a, thus h/m=e. Jn another words saying Cps; o can

represent an amortized vibration, in the case when the physical characteristics of
the vibration (h, ¢ and w) are adequately in the relation (12.19).

Coming back to the Figures 12.4 and 12.5, we see that in the Figure 12.4
“the enveloping curve” of the curve b represents the graphical expression of the
relation (12.7). This curve was traced for positive values only of the function
Cps; a. It is similar with the curve b of Figure 12.3. In the same way “thc

enveloping curve” of the curve 4 of Figure 12.5 represents the graphical expression
of the relation (12.13), for p = 0.4 and it is similar with the curve d of Figure 12.3.

If we choose adequately the value of p, as we have shown before, the curves
b and d of Figure 3 are looking very close alike, even if they refer to the different
BTFs namely, the Logarithmic Spiral and Parabolic Spiral, respectively.

12.4. Conclusions of Chapter 12

From what we have shown in ihe previous chapters, we can take the
following important conclusions:

12.4.1. In the Paratrigonometry (Chapter 6) beside the Symmetric Basic
Trigonometric Figures (BTFs) we can use the asymmetric BTFs with respect to the
coordinate axis Ox - Oy. In this paper we analyzed as BTFs the following finite
spirals, developed in the trigonometric sense with the values of the angle o
between @ =0 upto @ =2-K -z (where K is a positive integer number):;

— Archimedean Spiral;

— Logarithmic Spiral;

— The spiral which we named “Parabolic Spiral”. ;

The mathematical modeling of these spirals in this chapter was done in the
simplest possible manner such as by representing them in the polar coordinates.
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The spirals are developing from the polar radius p=1 towards p=0, even to
£ =0 or tending to this value (for the Logarithmic Spiral).

12.4.2. The Paratrigonometric Functions corresponding to the BTFs
mentioned above (Spirals) denoted by Spsa, Cpsa, etc., arc expressed by the

product of the vector radius function which characterize the corresponding spiral
p(a), and the trigonometric functions of the Classical Trigonometry (CT), sina .

cosa , etc.

12.4.3. The function Cps; « referring to the Logarithmic Spiral (from

where we have the index L) as BTF, coincide with the mathematical expression of
the elongation in the case of the amortized mechanical vibrations.



